Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Peptides ; 161: 170943, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36621672

RESUMO

The most commonly used opioid analgesics are limited by their severe side-effects in the clinical treatment of pain. Preliminary reports indicate that the combination of classical opioids and N/OFQ receptor (NOP) ligands may be an effective strategy to reduce unwanted side-effects and improve antinociception. But the interaction of these two receptor ligands in pain regulation at the peripheral level remains unclear. In this study, the antinociception of a designed amide analogue of the mu opioid receptor (MOP) peptide agonist DAMGO, DAMGO-NH2, and its antinociceptive interaction with the peripherally limited NOP peptide agonist NOP01 was investigated in two mouse models of formalin pain. Our results showed that DAMGO-NH2 acted as a MOP agonist in in vitro functional assays. Moreover, local subcutaneous or intraplantar injection of DAMGO-NH2 exerted dose-related antinociception in both phases of the formalin orofacial and intraplantar pain, which could be mediated by the classical opioid receptor. Peripheral but not central pretreatment with the peripherally restricted opioid antagonist naloxone methiodide inhibited local DAMGO-NH2-induced antinociception, supporting the involvement of the peripheral opioid receptor in local DAMGO-NH2-induced antinociception. Furthermore, co-administration of the inactive doses of DAMGO-NH2 and NOP01 produced effective antinociception. More importantly, isobolographic analysis indicates that the combination of DAMGO-NH2 and NOP01 elicited supra-additive antinociception in these two models of formalin pain. In addition, the combination of DAMGO-NH2 and NOP01 did not change motor function of mice in rotarod test. In conclusion, these data suggest that peripheral DAMGO-NH2 and particularly its combination therapy with NOP01 may be effective for pain management.


Assuntos
Analgésicos Opioides , Dor , Receptores Opioides , Animais , Camundongos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Relação Dose-Resposta a Droga , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/uso terapêutico , Ligantes , Receptor de Nociceptina , Dor/tratamento farmacológico , Peptídeos/uso terapêutico , Receptores Opioides/agonistas , Receptores Opioides mu/agonistas , Interações Medicamentosas
2.
Anesth Analg ; 136(2): 373-386, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638515

RESUMO

BACKGROUND: Increasing attention has been attracted to the development of bifunctional compounds to minimize the side effects of opioid analgesics. Pharmacological studies have verified the functional interaction between opioid and cannabinoid systems in pain management, suggesting that coactivation of the opioid and cannabinoid receptors may provide synergistic analgesia with fewer adverse reactions. Herein, we developed and characterized a novel bifunctional compound containing the pharmacophores of the mu-opioid receptor agonist DALDA and the cannabinoid peptide VD-Hpα-NH2, named OCP002. METHODS: The opioid and cannabinoid agonistic activities of OCP002 were investigated in calcium mobilization and western blotting assays, respectively. Moreover, the central and peripheral antinociceptive effects of OCP002 were evaluated in mouse preclinical models of tail-flick test, carrageenan-induced inflammatory pain, and acetic acid-induced visceral pain, respectively. Furthermore, the potential opioid and cannabinoid side effects of OCP002 were systematically investigated in mice after intracerebroventricular (ICV) and subcutaneous (SC) administrations. RESULTS: OCP002 functioned as a mixed agonist toward mu-opioid, kappa-opioid, and cannabinoid CB1 receptors in vitro. ICV and SC injections of OCP002 produced dose-dependent antinociception in mouse models of nociceptive (the median effective dose [ED50] values with 95% confidence interval [CI] are 0.14 [0.12-0.15] nmol and 0.32 [0.29-0.35] µmol/kg for ICV and SC injections, respectively), inflammatory (mechanical stimulation: ED50 values [95% CI] are 0.76 [0.64-0.90] nmol and 1.23 [1.10-1.38] µmol/kg for ICV and SC injections, respectively; thermal stimulation: ED50 values [95% CI] are 0.13 [0.10-0.17] nmol and 0.23 [0.08-0.40] µmol/kg for ICV and SC injections, respectively), and visceral pain (ED50 values [95% CI] are 0.0069 [0.0050-0.0092] nmol and 1.47 [1.13-1.86] µmol/kg for ICV and SC injections, respectively) via opioid and cannabinoid receptors. Encouragingly, OCP002 cannot cross the blood-brain barrier and exerted nontolerance-forming analgesia over 6-day treatment at both supraspinal and peripheral levels. Consistent with these behavioral results, repeated OCP002 administration did not elicit microglial hypertrophy and proliferation, the typical features of opioid-induced tolerance, in the spinal cord. Furthermore, at the effective analgesic doses, SC OCP002 exhibited minimized opioid and cannabinoid side effects on motor performance, body temperature, gastric motility, physical and psychological dependence, as well as sedation in mice. CONCLUSIONS: This study demonstrates that OCP002 produces potent and nontolerance-forming antinociception in mice with reduced opioid- and cannabinoid-related side effects, which strengthen the candidacy of bifunctional drugs targeting opioid/cannabinoid receptors for translational-medical development to replace or assist the traditional opioid analgesics.


Assuntos
Analgésicos , Agonistas de Receptores de Canabinoides , Canabinoides , Receptores Opioides , Dor Visceral , Animais , Camundongos , Analgésicos/farmacologia , Analgésicos Opioides , Relação Dose-Resposta a Droga , Receptores de Canabinoides , Receptores Opioides/agonistas , Dor Visceral/induzido quimicamente , Dor Visceral/tratamento farmacológico , Agonistas de Receptores de Canabinoides/farmacologia
3.
J Pain ; 24(5): 840-859, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36586660

RESUMO

Venom-derived NaV1.7 channel blockers have promising prospects in pain management. The 34-residue tarantula peptide GpTx-1 is a potent NaV1.7 channel blocker. Its powerful analog [Ala5, Phe6, Leu26, Arg28]GpTx-1 (GpTx-1-71) displayed excellent NaV1.7 selectivity and analgesic properties in mice. The current study aimed to elucidate the anti-hyperalgesic activities of GpTx-1-71 in inflammatory pain and reveal the underlying mechanisms. Our results demonstrated that intrathecal and intraplantar injections of GpTx-1-71 dose-dependently attenuated CFA-induced inflammatory hypersensitivity in rats. Moreover, GpTx-1-71-induced anti-hyperalgesia was significantly reduced by opioid receptor antagonists and the enkephalin antibody and diminished in proenkephalin (Penk) gene knockout animals. Consistently, GpTx-1-71 treatment increased the enkephalin level in the spinal dorsal horn and promoted the Penk transcription and enkephalin release in primary dorsal root ganglion (DRG) neurons, wherein sodium played a crucial role in these processes. Mass spectrometry analysis revealed that GpTx-1-71 mainly promoted the secretion of Met-enkephalin but not Leu-enkephalin from DRG neurons. In addition, the combination of subtherapeutic Met-enkephalin and GpTx-1-71 produced synergistic anti-hyperalgesia in CFA-induced inflammatory hypersensitivity. These findings suggest that the endogenous enkephalin pathway is essential for GpTx-1-71-induced spinal and peripheral analgesia in inflammatory pain. PERSPECTIVE: This article presents a possible pharmacological mechanism underlying NaV1.7 blocker-induced analgesia in inflammatory pain, which helps us to better understand and develop venom-based painkillers for incurable pain.


Assuntos
Hiperalgesia , Dor , Ratos , Camundongos , Animais , Dor/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Encefalinas/metabolismo , Encefalina Metionina/metabolismo , Encefalina Metionina/farmacologia , Encefalina Metionina/uso terapêutico , Gânglios Espinais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
4.
ACS Chem Neurosci ; 13(21): 3078-3092, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36262082

RESUMO

Mounting evidence indicates that the neuropeptide FF (NPFF) system is involved in the side effects of opioid usage, including antinociceptive tolerance, hyperalgesia, abuse, constipation, and respiratory depression. Our group recently discovered that the multitarget opioid/NPFF receptor agonist DN-9 exhibits peripheral antinociceptive activity. To improve its metabolic stability, antinociceptive potency, and duration, in this study, we designed and synthesized a novel cyclic disulfide analogue of DN-9, OFP011, and examined its bioactivity through in vitro cyclic adenosine monophosphate (cAMP) functional assays and in vivo behavioral experiments. OFP011 exhibited multifunctional agonistic effects at the µ-opioid and the NPFF1 and NPFF2 receptors and partial agonistic effects at the δ- and κ-opioid in vitro, as determined via the cAMP functional assays. Pharmacokinetic and pharmacological experiments revealed improvement in its blood-brain barrier permeability after systemic administration. In addition, subcutaneous OFP011 exhibited potent and long-lasting antinociceptive activity via the central µ- and κ-opioid receptors, as observed in different physiological and pathological pain models. At the highest antinociceptive doses, subcutaneous OFP011 exhibited limited tolerance, gastrointestinal transit, motor coordination, addiction, reward, and respiration depression. Notably, OFP011 exhibited potent oral antinociceptive activities in mouse models of acute, inflammatory, and neuropathic pain. These results suggest that the multifunctional opioid/NPFF receptor agonists with improved blood-brain barrier penetration are a promising strategy for long-term treatment of moderate to severe nociceptive and pathological pain with fewer side effects.


Assuntos
Analgésicos Opioides , Peptídeos Cíclicos , Camundongos , Animais , Analgésicos Opioides/farmacologia , Peptídeos Cíclicos/uso terapêutico , Barreira Hematoencefálica , Receptores de Neuropeptídeos , Dor/tratamento farmacológico , Receptores Opioides mu/agonistas
5.
Brain Res Bull ; 190: 50-61, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36126873

RESUMO

BACKGROUND: The gut microbiota is known to be associated with the regulation of many neurological diseases and behaviors, including chronic pain. However, it is unclear whether the gut microbiota is critical to the itch sensation. In this study, we investigated the effects of gut microbiota depletion on acute itch. METHODS: First, an antibiotic cocktail was orally administered to deplete the gut microbiota in male C57BL/6 mice. Then, pruritogens were intradermally injected to induce acute itch behavior. In addition, antibiotic-treated mice received transplantation of fecal microbiota from untreated mice, followed by tests for acute itch. The changes in c-Fos expression in trigeminal ganglia (TG) neurons were also investigated by immunofluorescence staining. RESULTS: Our results indicated that chronic antibiotic treatment significantly reduced the diversity and richness of the gut microbiota of mice. Compared to vehicle-treated mice, antibiotic-treated mice showed reductions in acute itch behavior induced by compound 48/80, chloroquine (CQ), and serotonin (5-HT), respectively. Moreover, repositioning of microbiota reversed the reductions in acute itch behavior in antibiotic-treated mice. In addition, immunofluorescence staining revealed that antibiotic-treated mice displayed decreased c-Fos expression in ipsilateral TG compared to controls. CONCLUSIONS: Our study, for the first time, discovered that antibiotic-induced gut microbiota depletion could reduce acute itch behavior, which may be connected with decreased TG neuronal activity.


Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Masculino , Microbioma Gastrointestinal/fisiologia , Camundongos Endogâmicos C57BL , Antibacterianos/farmacologia , Prurido/induzido quimicamente , Prurido/tratamento farmacológico , Serotonina/farmacologia
6.
Brain Behav Immun ; 102: 23-39, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35143878

RESUMO

Burn injury-induced pain (BIP) is an extremely complicated condition usually resistant to analgesic drugs, while its pathogenesis remains unknown. Considerable attention has been attracted to elucidate the glial mechanisms in chronic pain. In this study, we initiatively used a mouse model of second-degree BIP to investigate the underlying non-neuronal mechanisms at the spinal cord level. Our behavioral results showed that hind-paw burn injury caused persistent allodynia and hyperalgesia for 2 weeks in mice. Further studies revealed that both microglia and astrocytes activated in a spatially- and temporally-dependent manner in spinal cord after burn injury. In addition, the phosphorylated p38 mitogen-activated protein kinase (MAPK)-mediated tumor necrosis factor (TNF) release in spinal microglia is essentially attributed to the early stage of BIP, while the c-Jun N-terminal kinase (JNK) MAPK-dependent chemokine CXCL1 expression is mainly involved in the maintenance of pain hypersensitivity. Most strikingly, burn injury-induced pain symptoms and the activation of astrocytes were significantly suppressed by TNF inhibitor Thalidomide. On the contrary, intrathecal injection of TNF caused apparent pain hypersensitivity, accompanied by the activation of astrocytes and the upregulation of CXCL1 via the JNK MAPK signaling pathway, indicating that TNF is the key cytokine in the interaction between microglia and astrocytes at the spinal level. Moreover, treatment with the CXCR2 receptor antagonist SB225002 to block the biological activities of CXCL1 significantly attenuated the mechanical allodynia and thermal hyperalgesia in this BIP model. Taken together, this study indicates that intervention of glial pathways provides a new perspective in the management of BIP.


Assuntos
Queimaduras , Proteínas Quinases JNK Ativadas por Mitógeno , Sistema de Sinalização das MAP Quinases , Microglia , Dor , Animais , Astrócitos/metabolismo , Queimaduras/metabolismo , Queimaduras/patologia , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/farmacologia , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Microglia/metabolismo , Dor/etiologia , Dor/metabolismo , Dor/patologia , Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Neuropeptides ; 91: 102212, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34826712

RESUMO

Orofacial pain is one of the most common medical challenges. A preliminary report indicates that the NOP receptor may act as a therapeutic target in orofacial pain. Previous studies have shown that [(pF)Phe4, Aib7, Aib11, Arg14, Lys15]N/OFQ-NH2 (NOP01) functions as a potent NOP receptor peptide agonist. This work aims to investigate the antinociception of NOP01 and its possible action mechanisms in a formalin-induced mouse orofacial pain model at different levels. Our results demonstrated that local, intraperitoneal (i.p.) or intrathecal (i.t.) injection of NOP01 produced dose-related antinociception in both phases of the formalin pain, which could be inhibited by the NOP receptor antagonist but not the classical opioid receptor antagonist. Furthermore, the antinociception induced by systemic NOP01 was blocked by local but not spinal pretreatment with the NOP receptor antagonist, suggesting the involvement of the peripheral NOP receptor in NOP01-induced systemic antinociception. Moreover, local injection of NOP01 markedly suppressed the expression of c-Fos protein induced by formalin in ipsilateral trigeminal ganglion (TG) neurons. In conclusion, this work suggests that NOP01 exerts significant antinociception on orofacial pain at both peripheral and spinal levels via the NOP receptor. Notably, NOP01 cannot readily penetrate the blood-brain barrier. Thus, NOP01 may behave as a potential compound for developing peripherally restricted analgesics.


Assuntos
Analgésicos/uso terapêutico , Dor Facial/tratamento farmacológico , Nociceptividade/efeitos dos fármacos , Receptores Opioides/agonistas , Analgésicos/farmacologia , Animais , Modelos Animais de Doenças , Dor Facial/induzido quimicamente , Formaldeído , Camundongos , Medição da Dor , Receptor de Nociceptina
8.
J Med Chem ; 64(18): 13394-13409, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34465090

RESUMO

We previously reported that a multifunctional opioid/neuropeptide FF receptor agonist, DN-9, achieved peripherally restricted analgesia with reduced side effects. To develop stable and orally bioavailable analogues of DN-9, eight lactam-bridged cyclic analogues of DN-9 between positions 2 and 5 were designed, synthesized, and biologically evaluated. In vitro cAMP assays revealed that these analogues, except 7, were multifunctional ligands that activated opioid and neuropeptide FF receptors. Analogue 1 exhibited improved potency for κ-opioid and NPFF2 receptors. All analogues exhibited potent, long-lasting, and peripherally restricted antinociception in the tail-flick test without tolerance development after subcutaneous administration and produced oral analgesia. Oral administration of the optimized compound analogue 1 exhibited powerful, peripherally restricted antinociceptive effects in mouse models of acute, inflammatory, and neuropathic pain. Remarkably, orally administered analogue 1 had no significant side effects, such as tolerance, dependence, constipation, or respiratory depression, at effective analgesic doses.


Assuntos
Analgésicos Opioides/uso terapêutico , Neuralgia/tratamento farmacológico , Peptídeos Cíclicos/uso terapêutico , Receptores de Neuropeptídeos/agonistas , Analgésicos Opioides/síntese química , Analgésicos Opioides/farmacocinética , Animais , Ligantes , Masculino , Camundongos , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...